Cleavage of Dicer Protein by I7 Protease during Vaccinia Virus Infection

نویسندگان

  • Jhih-Si Chen
  • Hui-Chun Li
  • Shu-I Lin
  • Chee-Hing Yang
  • Wan-Yu Chien
  • Ciao-Ling Syu
  • Shih-Yen Lo
چکیده

Dicer is the key component in the miRNA pathway. Degradation of Dicer protein is facilitated during vaccinia virus (VV) infection. A C-terminal cleaved product of Dicer protein was detected in the presence of MG132 during VV infection. Thus, it is possible that Dicer protein is cleaved by a viral protease followed by proteasome degradation of the cleaved product. There is a potential I7 protease cleavage site in the C-terminus of Dicer protein. Indeed, reduction of Dicer protein was detected when Dicer was co-expressed with I7 protease but not with an I7 protease mutant protein lack of the protease activity. Mutation of the potential I7 cleavage site in the C-terminus of Dicer protein resisted its degradation during VV infection. Furthermore, Dicer protein was reduced dramatically by recombinant VV vI7Li after the induction of I7 protease. If VV could facilitate the degradation of Dicer protein, the process of miRNA should be affected by VV infection. Indeed, accumulation of precursor miR122 was detected after VV infection or I7 protease expression. Reduction of miR122 would result in the suppression of HCV sub-genomic RNA replication, and, in turn, the amount of viral proteins. As expected, significant reduction of HCVNS5A protein was detected after VV infection and I7 protease expression. Therefore, our results suggest that VV could cleave Dicer protein through I7 protease to facilitate Dicer degradation, and in turn, suppress the processing of miRNAs. Effect of Dicer protein on VV replication was also studied. Exogenous expression of Dicer protein suppresses VV replication slightly while knockdown of Dicer protein does not affect VV replication significantly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the I7 protein in proteolytic processing of vaccinia virus membrane and core components.

Certain core and membrane proteins of vaccinia virus undergo proteolytic cleavage at consensus AG/X sites. The processing of core proteins is coupled to morphogenesis and is inhibited by the drug rifampin, whereas processing of the A17 membrane protein occurs at an earlier stage of assembly and is unaffected by the drug. A temperature-sensitive mutant with a lesion in the I7L gene exhibits bloc...

متن کامل

Ammonium Chloride as a Potential Candidate for the Treatment and Controlling of Covid-19

Coronaviruses, pathogens with a zoonotic potential, are positive sense single-stranded RNA viruses. SARS Coronavirus-2, the cause of Covid-19 infection, is from the betacoronavirinea subfamily, which has close genomic and proteomic similarity to SARS Coronavirus-1(1). Given the genomic proximity of these two viruses, studies on SARS Coronavirus-1 can be used to control or detect SARS Coronaviru...

متن کامل

Molecular detection of proteolytic activity of human parechovirus 2A protein by gene expression

  Parechoviruses form one of the nine genera in the picornaviridae family, and include two human pathogens: Human parechovirus type1 and 2 (Hpev1 and Hpev2). The genome of picornaviruses encodes a single polyprotein, which undergoes a cleavage cascade performed by virus encoded proteases to give the final virus proteins. The primary cleavage occurs by 2A protein and this step is critical for vi...

متن کامل

Cloning and Expression of Protease 2A from Coxsakievirus B3

Protease 2A (2Apro) of coxsackievirus B3 (CVB3) plays a major role in viral replication. In case of infection, viral proteins are being synthesized from viral mRNA using host biosynthesis machinery. 2Apro of virus, after being synthesized, exhibits two critical functions, cleavage of viral proteins and breaking eukaryotic initiation factor 4G. The enzyme plays an essential role in viral replic...

متن کامل

Engineered serine protease inhibitor prevents furin-catalyzed activation of the fusion glycoprotein and production of infectious measles virus.

We have identified the major cellular endoprotease that activates the fusion (F) glycoprotein of measles virus (MV) and have engineered a serine protease inhibitor (serpin) to target the endoprotease and inhibit the production of infectious MV. The F-protein precursor of MV was not cleaved efficiently into the mature F protein in human colon carcinoma cells lacking functional furin, indicating ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015